Огнеупоры – это материалы, которые способны выдерживать высокие температуры и агрессивные среды, при этом не разрушаясь под действием процессов, которые происходят в тепловых агрегатах. Огнеупорные материалы состоят из огнеупорных глин и каолинов.
Классификация, свойства и характеристика огнеупорных материалов
Существует несколько классификаций, которые разделяют огнеупорные материалы на группы и подгруппы в зависимости от свойств и состава. По способу получения выделяют 2 основные группы огнеупоров: спеченные и плавленые, подробности на сайте https://www.sltgroup.ru/catalog/ogneupornye-materialy/.
Спеченные огнеупоры представляют собой состав из грубой керамики, которые получаются путем спекания мелких частиц огнеупорных материалов. Они характеризуются неоднородной структурой (реликтовой обломочной) и зернистым «черепком». Часто они выглядят как кирпич.
Плавленые огнеупоры получаются литьем из расплава тех же материалов, что и в предыдущем случае, но в итоге они имеют более однородную структуру, не зернисты. Они имеют меньший объем, не рассыпаются и в целом более качественны за счет структуры.
По химическому составу различают 4 группы огнеупоров:
- кремнеземистые (динасовые, динасовые с примесями, кварцевые, лешательеритовые);
- алюмосиликатные (полукислые, шамотные, высокоглиноземистые);
- основные (магнезиальные, магнезиально-шпинелидные, магнезиально-силикатные, магнезиально-известковистые, известковистые);
- цирконистые.
Огнеупорные теплоизоляционные материалы
Теплоизоляционные огнеупорные материалы характеризуются слабой теплопроводимостью. Это свойство достигается за счет структуры – теплоизоляторы очень пористые. В зависимости от способа производства микроструктура может быть ячеистой, зернистой, волокнистой, пластинчатой или смешанной. Используются они чаще всего для кладки при строительстве печей и каминов.
Это дает возможность снижать теплопотери и за счет этого накапливать тепло. Теплоизоляционные огнеупоры используют не только для кладки бытовых печей, но и производственных. Как раз во втором случае за счет снижения теплопотерь повышается эффективность работы печи, сокращается полный цикл производства и, как следствие, повышается эффективность и производительность.