Классификация и применение огнеупорных материалов

0
254

Огнеупоры – это материалы, которые способны выдерживать высокие температуры и агрессивные среды, при этом не разрушаясь под действием процессов, которые происходят в тепловых агрегатах. Огнеупорные материалы состоят из огнеупорных глин и каолинов.

Классификация, свойства и характеристика огнеупорных материалов

Существует несколько классификаций, которые разделяют огнеупорные материалы на группы и подгруппы в зависимости от свойств и состава. По способу получения выделяют 2 основные группы огнеупоров: спеченные и плавленые, подробности на сайте https://www.sltgroup.ru/catalog/ogneupornye-materialy/.

Спеченные огнеупоры представляют собой состав из грубой керамики, которые получаются путем спекания мелких частиц огнеупорных материалов. Они характеризуются неоднородной структурой (реликтовой обломочной) и зернистым «черепком». Часто они выглядят как кирпич.

Плавленые огнеупоры получаются литьем из расплава тех же материалов, что и в предыдущем случае, но в итоге они имеют более однородную структуру, не зернисты. Они имеют меньший объем, не рассыпаются и в целом более качественны за счет структуры.

По химическому составу различают 4 группы огнеупоров:

  1. кремнеземистые (динасовые, динасовые с примесями, кварцевые, лешательеритовые);
  2. алюмосиликатные (полукислые, шамотные, высокоглиноземистые);
  3. основные (магнезиальные, магнезиально-шпинелидные, магнезиально-силикатные, магнезиально-известковистые, известковистые);
  4. цирконистые.

Огнеупорные теплоизоляционные материалы

Теплоизоляционные огнеупорные материалы характеризуются слабой теплопроводимостью. Это свойство достигается за счет структуры – теплоизоляторы очень пористые. В зависимости от способа производства микроструктура может быть ячеистой, зернистой, волокнистой, пластинчатой или смешанной. Используются они чаще всего для кладки при строительстве печей и каминов.

Это дает возможность снижать теплопотери и за счет этого накапливать тепло. Теплоизоляционные огнеупоры используют не только для кладки бытовых печей, но и производственных. Как раз во втором случае за счет снижения теплопотерь повышается эффективность работы печи, сокращается полный цикл производства и, как следствие, повышается эффективность и производительность.